
Concurrency Benchmark Suite and Metrics for Java Programs

Abstract
Java benchmarks available today may not reflect the highly concurrent
applications we anticipate in the future and none of these benchmarks
are dedicated to concurrency measurement. Existing Java benchmarks
either report throughput or execution time and behave like a black box
without telling users how threads interact with each other, therefore they
lack the information of what kind of concurrency patterns are involved.
In order to measure what concurrency patterns are used in Java
concurrency benchmarks, a range of concurrency pertinent metrics are
needed to assess the performance and different concurrency behaviors
of Java programs, telling how threads interact with shared memory and
communicate with each other.

Metrics
In order to characterize concurrency Java programs, we are using
following fine-grained metrics.

Concurrency Thread Metrics:

• Thread Density: tells how many threads do a meaningful amount of
work.

• Periodic Thread Density: measures how many threads contribute to
the workload concurrently.

Shared Memory Metrics:

• Shared Read Rate: measures read operations on shared objects per
second.

• Shared Write Rate: measures write operations on shared objects per
second.

• Alternating Modification Rate: measures the rate which the ownership
of a shared object is changed.

• Thread Density / shared: computes the thread density for objects that
have become shared.

• Periodic Thread Density / shared: measures how many threads

contribute to the shared objects concurrently.
Other Metrics:

• Complexity of benchmarks

• Data Structures

• Dynamic Memory Use

Project Overview
The following figure shows the overview of the concurrency benchmark
suite, and how we will get metrics to assess each sub-benchmark. Our
concurrency benchmark suite is developed on the IBM J9JVM and there
are three different ways to get all the metrics we proposed:

concurrency thread metrics can be obtained by JVMTI (JVM tool
interface) agent; shared memory metrics can be acquired by JVM
instrumentation; other metrics can be gained from the benchmark suite
itself. We will use micro benchmarks to select the most useful metrics
and use micro benchmarks' training data to classify the real world
applications in our final benchmark suite to make sure it covers different
concurrency patterns.

Micro Benchmarks:

The first step is to use a range of micro benchmarks where each covers a
different parallel algorithm and a program structure.

Feature Selection:

An exhaustive feature selection algorithm is used to select the most
pertinent metrics subset. Best First Search algorithm will be used to
reduce the search space.

Classification:

After the metrics subset is identified and the training data from micro
benchmarks is obtained, the next step is to classify real world
applications in our benchmark suites into different patterns. We consider
two classification algorithms: K-Nearest Neighbor and Decision Tree.

Chenwei Wang, Eric Aubanel, David Bremner, Michael Dawson
University of New Brunswick, IBM Canada

Faculty of Computer Science

vicky.wang@unb.ca, aubanel@unb.ca,

bremner@unb.ca, Michael_Dawson@ca.ibm.com

Algorithm Program Structure Application

Task parallelism Loop Parallelism +

Master/Worker

Image-construction

program

Divide and

conquer

Fork/Join Merge sort, Matrix

diagonalization

Geometric

Decomposition

Loop Parallelism Matrix multiplication

Pipeline Fork/Join Fourier-transform computations

with 3 stages

Event-Based

Coordination

Fork/Join Discrete event

simulations

